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Abstract. This paper presents a solution to certain problems in switched 
controller design for stochastic dynamical systems with a quadratic cost. 
The mean result is a separation theorem for partial information systems. 
This result is then used to convert the partial information stochastic 
control problem to a complete information stochastic control problem. 
We also show that certainty equivalence does not hold. The optimal se- 
quence of controllers can be determined via an appropriate solution to a 
dynamic programming problem. 

1    Introduction 

There are many real industrial control problems where the control action is 
determined by switching among a finite number of given control laws. Typi- 
cal examples include an automobile transmission, where different gears need to 
be switched in order to obtain desirable performance (gain switching) [1,2], a 
thermostat where the plant heats up when the control is on and cools when the 
control is off, and steering an automobile where switching between appropriately 
chosen controls laws can make an otherwise uncontrollable vehicle controllable 
and allow the vehicle to be steered (locally) in any desired direction [3](pg 76). 

In [4,5] we devised optimal strategies for switching between given controllers 
at fixed switching intervals for plants described by an uncertain differential equa- 
tion. In this paper we consider optimal switching strategies for plants described 
by linear time-varying stochastic differential equations with a quadratic cost 

* This work was supported by the Center for Sensor Signal and Information Processing 
the Australian Research Council and by US Army Research Office under the MURI 
grant "An Integrated Approach to Intelligent Systems", grant DAAH04-96-1-0341. 



functional and develop optimal switching strategies for both the full and partial 
information cases [6,7]. We consider separation and certainty equivalence for 
switched systems. Although these notions have been studied for many years [8] 
and their applicability to various classes of stochastic systems continues to be of 
great interest e.g. [9]. To our knowledge these important notions have not been 
investigated for linear switched controller and hybrid control systems. This pa- 
per presumes a background knowledge of linear stochastic control systems and 
Ito calculus. An excellent treatment of these subjects can be found in [10] and 

In this paper we show that the full information problem with quadratic cost 
the optimal switching sequence of controllers is given by a solution to a dynamic 
programming equation. We show that where the switching function depends on 
both time and state (state estimate) certainty equivalence does not hold. For 
the partial information case a separation theorem is established. This is then 
used to convert the partial information problem to a full information problem 
enabling the optimal controller switching sequence to be determined. 

The organization of this paper is as follows. Section 2 considers full infor- 
mation switched controller systems. The main results of this section is to show 
equivalence between the optimal controller switching sequence and the solution 
to a dynamic programming equation. In this section it is also shown that for the 
class of systems considered in this paper certainty equivalence does not hold. 
In section 3 the partial information problem is considered. The main results of 
this section are given in terms of the existence of suitable solutions to a Ricatti 
differential equation of the Kaiman Filtering type and appropriate solutions to a 
dynamic programming equation. In section 4 a simulation example is presented. 

2    Optimal Controller Switching with Full Information 

All random variable in this paper are denned on the probability space (ß, A, V). 
Let u>(-) be a vector valued Wiener process with covariance matrix Q(-). Let £ 
denote expectation with respect to the measure V. Let N £ N+ be a given pos- 
itive integer. The permissible switching times {to,ti,t2,.. .,tff} corresponding 
to an ordered discrete set where (£,• G R+). 

Consider the following stochastic system whose dynamics on the interval 
[0,%) are given by the stochastic differential equation 

dx(t) = (A(t)x{t) + B2{t)u{t))dt + Bi(t)dw(t);  x(0) = x0 (1) 

where x(t) G Rn denotes the state, u(t) € Rh is the control and the functions 
A(t), Bi(t), B2(t), C(t) are given piecewise continuous matrix functions of time 
of appropriate dimension. 

Controller Switching with State Feedback [12,5,4,13]. Given a finite collection 
of controllers 

u1(t) = U1(t,x{t)),   u2{t) = U2{t,x(t)),    ...,   uk{t) = Uk(t,x(t))       (2) 



where the control laws U\{-, •)> U?,{-, •),- ■ -,Uk{-, •) are given continuous matrix 
functions. Let /,(•) denote a state switching function which is permitted to 
switch between controllers at set switching times tj, {j = 1,..., N}. The class of 
switching functions considered in this section is of the form /,(•) : {x(-) |0

J} —> 

{1,2,..., k}, which map from the set of state measurements {x(-) \0
3} to the set 

of symbols {1,2,..., k} which index the controllers (2). This class of switching 
functions defines a family of dynamic nonlinear state feedback controllers of the 
form: 

Vj G {0,l,...,i\r-l} u(t) = ft,.(*,*(«)) Vf € [*;,%+!))   where ij = /■,(*(•) ft). 
(3) 

Hence the control strategy, which is a rule for switching from one controller 
to another, constructs a symbolic sequence {ij}fSo from the set of state mea- 

surements x(-) \0
3. The set of all admissible controls achievable by controller 

switching (3) with the controllers (2) is denoted by U. 
Let S(-) be a given function which maps from Rn to R, let N(t) and M(t) 

be given matrices of time satisfying N(t), M{i) > pi, p > 0 W G [0,ijv]- Xj > 0 
is a given constant matrix which penalises the final state. 

Introduce the following quadratic cost function, 

W(t,x,u(t)) = £ \x\t)N{t)x{t) + u'{t)M{t)u{t)] (4) 

and define 

F](x0,S(-)) i £[S(x(tj+1))) + /       W(t,x,ui(t))dt. (5) 

Definition 1 (State Feedback Stochastic Control Problem,). The state feedback 
stochastic control problem with system (1) is said to have a solution via controller 
switching with the controllers (2) if the following conditions hold: 

(i) For any admissible control sequence, u € U, there exists a unique trajectory 
of system (1) on the interval [0,<tjv). 

(ii) The cost 

J{u)u€U = €(J" x\t)N{t)x(t) + u'(t)M(t)u{t)dt + x'ttfXfxtNj    (6) 

exists and is finite for some admissible control sequence, u £ U. 

Theorem 1. The state feedback stochastic control problem (Definition (1)) for 
system (1) has a solution via controller switching with the state feedback con- 
trollers (2) if and only if the dynamic programming problem 

VN(x0) = £ [x'tNXfxtN];   Vj(x0) = . min  £ [FJ(x0,Vj+1(-))] (7) 
I —1,...,K 

has a solution for all j = 0,1,..., N — 1 and all XQ € Rn. 



Furthermore let ij (xo) be an index such that the minimum in (7) is achieved 
fori = ij(xo). Then the controller (2), (3) associated with the switching sequence 

{'j'}^1 where ij = ij{x{tj)) solves the state feedback stochastic control problem. 

Proof. Sufficiency. For any j = 0,1,..., N introduce the cost to go 

vii Ä* (jf" «'(WM*) + «'(<WM*)* + *'t„xt*t„) ■    (8) u(t)6W 

Following [14,10] Vj(-) satisfies (7). Also it follows from (8), that if the stochastic 
control problem has a solution, then Vo(xo) exists and is finite. 

Necessity. Equation (7) implies that for the controller associated with the 
switching sequence {i^fSg we have 

£ Qf " x'(t)N(t)x(t) + u\t)M(t)u(t)dt + x'tNXfxtN\ < Vo(x(0)).      (9) 

Since V^)(x(0)) = J(u*,x(0)) < Jueu(u,x(0)), the controller associated with 

h- the switching sequence, {ij}j=0 , solves the state feedback stochastic control 
problem. 

Suppose that the given state feedback controllers (2) are of the form 

u1(t) = K1(t)x(t),   u2(t) = K2{t)x(t),    ...,   uk(t) = Kk(t)x{t) (10) 

where Kt(t) are given matrices of time, then we have. 

Definition 2 Certainty Equivalence [10, 6]. The system (1) is said to satisfy a 
certainty equivalence principle if the optimal admissible control law is indepen- 
dent of the statistics of the noise inputs. 

Corollary 1 Consider system (1) and state feedback controllers (10). For this 
class of stochastic control problems certainty equivalence does not hold. 

Proof. Consider system (1) with the state feedback basic controllers (10). All 
that is required to be shown is that the controller switching sequence for the 
plant with no noise is different to that with noise. 

The cost J(u) for all admissible controllers can be rewritten as 

JueuW = £ (*'tNXsxtN + J "x'(t)(N{t) + K'itR(t)Kit)x(t)dt\ .     (11) 

Expressing the state as 

*(*) = *(*) + **(*) (12) 

with 

£{t) = (A + B2Kit)x{t),  *(0) = s(0) (13) 

dx*{t) = (A + B2Kii)x*(t)dt + dw(t) x*(0) = 0, (14) 



it follows that 

£x*{t) = 0, £x{t)x*(t) = x'{t)£x*(t) = 0 V*. (15) 

Following standard dynamic programming we substitute of (14) and (15) into 
(11) and rewriting (11) as: 

>u&4 : (x'tNXfxtN) + £ (jtN x'(t)(N(t) + K'itR(t)Kit)x(t)dtj   (16) 

+£ (J N z'\t)(N(t)+K'itR(t)Kit)x'(t)dt\ 

+£ ( E r+1 *'(t)(N(t) + K'itR(t)Kit)x(t)dt) . 
\n=0 */t» / 

It can now be seen that in general the choice of gain matrix that optimizes the 
second and third terms in the above expression (16) will depend on both the 
state as well as the noise covariance and its contribution to the state over the 
interval [£jv-i,tjv). This contradicts certainty equivalence. 

Remark In switched controller systems the optimal controller switching sequence 
for linear feedback controllers depends on the input noise covariance. This result, 
also applies to zero-mean white Gaussian process noise inputs. This differs from 
optimal linear quadratic Gaussian control [7,6,15] were the optimal feedback 
gain is independent of the input noise covariance. 

We illustrate that Corollary (1) above by considering the system (1) with 
parameters (29) in the simple scenario corresponding to only one switching time 
with switching occurring at T = 0. Let the system be denned over the interval 
[0,0.1) with Xf = 0. The process noise w(t) is zero mean Gaussian with covari- 
ance £(w(t)w (t)) = 1.0. For this plant the cost (when there is no process noise 
is given by the second component of (16)) and is equal to J(ui) = X'0Z\XQ for 
controller u\ and J(«2) = ^o^zo f°r controller «2 where 

_ [0.5159    -0.0314] 
1- [-0.0314 0.3257   J   2~ 

0.5701    -0.0873 
-0.0873 0.3459 

When there is noise the cost of using any of the given controllers is determined by 
the second and third components of (16) and is equal to J(«i) = a;o^ixo+0.0152 
or J{v.2) = £Q^2ZO+0.0210. Consider the point x = [0.1,0.1] for the case without 
any noise, «2 is the optimal control to use, whereas with noise the optimal control 
to use is «1. 

It can be clearly seen from Figures (1) and (2) that the controller switching 
regions depend on the process noise covariance. This differs from standard L.Q.G. 
optimal control were the controller gain matrix is independent of the input noise 
covariance for zero-mean Gaussian process noise. 



3    Optimal Controller Switching with Partial Information 

Let £ be a random variable with Gaussian probability law, mean xo and co- 
variance Po and v(-) is a Wiener processes independent of iu(-) with covariance 
matrix R(-). Consider the following stochastic system whose dynamics on the 
interval [0,£/v) are described by the stochastic differential equations 

dx(t) = (A{t)x(t) + B2{t)u{t))dt + B!(t)dw(t),  x[0) = £, 

dy(t) = C{t)x(t)dt + dv(t), (17) 

where x(t) £ Rn denotes the state, y(t) € Rp denotes the output and u{t) G R* 
is the control input. The functions A(t), B\{t), B2(t), C(t) are known given 
piecewise continuous matrix functions of time. We assume that R(t) > pi, p > 
0 Vf € [0, tjv), and we define the following two families of sigma algebras 

Z*=<r(y{a),8<t) (18) 

Controller Switching with Output Feedback [12,5,4,13]. Given a collection of 
output feedback controllers 

m(<) = #i(t)tf(*),   u2{t)=K2{t)y{i),    ...,   uk(t) = Kk{t)y{t) (19) 

where Ki(-), K2{-), ■ ■ ■, Kk{-) are given continuous matrix functions of time, we 
define a switching function #j(-) which is permitted to switch the controllers (19) 
at switching times tj {j = 1,..., N}. The class of output switching functions 
considered in this section is of the form ^j(-) : {Ztj} —>• {1,2, ...,fc}, which 
map from the output sigma algebra {Z**} to the set of symbols {1,2, ...,fc} 
which index controllers (19). This class of switching functions defines the family 
of dynamic nonlinear output feedback controllers of the form: 

Vi€{0,l,...,i\r-1}  u(t) = Kij(t),y(t)  \/te[tj,tj+1)  where  ij^^Z^). 
(20) 

The control strategy now becomes a rule for switching from one controller to 
another to construct a symbolic sequence {ij}jSg from the sigma algebra Z*'. 
Furthermore let X denote the set of all controls achievable by controller switching 
(20) with the controllers (19) adapted to Z*. 

The solution to the partial information stochastic control problem considered 
in this section involves the following Ricatti differential equation 

P(t) = P(t)A'(t) + A{t)P(t) - P(t)C'(t)R(t)-l(t)C(t)P(t) + B2(t)Q(t)B'2(t) 

where P(0) = P0 (21) 

We consider the estimator equations of the form 

x(t) = A{t)x + P(*)C'(*)Ä(t)_1(y(*) - C{t)x) where i(0) = £ (22) 

which correspond to the continuous time Kaiman filter [16]. 



Let S(-) be a given function which maps from Rn to R and let x0 € Rn be a 
given vector. Introduce the following cost function: 

Wi(t, *,«(<)) = £ (x'{t)N(t)x{t) + u'(t)M(t)u{t)j . (23) 

Then 

FJ(x0,S(-)) ±£(S(x(tj+1))) + r°+1) W1(t,x,ui(t)Mt))dt. (24) 

Definition3 The output feedback stochastic control problem with system (17) 
is said to have a solution via controller switching with the controllers (19) if the 
following conditions hold: 

(i) For any admissible control sequence, u£X, and initial condition x(0) there 
exists a unique trajectory to the system state on the interval [0,f/v) and the 
solution to the Ricatti differential equation (21) exists and is positive definite 
for all te [0,tN). 

(ii) The cost given by 

J(u)uex = £[]     x'{t)N{t)x{t) + u'(t)M(t)u{t)dt + x'tNXsxtA  (25) 

exists and is finite for some admissible control sequence, u £ X, 

Theorem 2. The output feedback stochastic control problem (Definition (S)) 
has a solution via controller switching with the output feedback controllers (19) 
if and only if the solution P(-) to the Ricatti equation (21) with initial condition 
P(0) = PQ is defined and positive definite on the interval [0,fjv) and the dynamic 
programming equation 

VN(£tN) = £ (x'tNXjxtN) ;   Vj(xtj) = . minfe£ (FJ(xtj, Vj+1(xtj+1)))   (26) 

has a solution for j = 0,1,.. .,N — 1 for all XQ 6 Rn. 
Furthermore let ij(xo) be an index such that the minimum in (26) is achieved 

fort — ij(£o) and x(-) be the solution to the equation (22) with initial condition 
x(0) = XQ. Then the controller (19), (20) associated with the switching sequence 

{*j}j=o   where ij = $j(£(tj)) solves the output feedback control problem. 

Proof. (Outline) By virtue of Girsanov's theorem, Lemmata (1,2,3,4) in Section 
6 below and Lemma (2.4.3) from [6] it follows that the evolution of the state 
of (17) with u(t) = 0, denoted a(t) satisfies ^[a^l-Z'] = 5u[a(<)|^]. Thus 
the states estimates generated by a Kaiman filter are optimal when there is 
controller switching as considered in this paper. This is established in detail in 
section 6. It then follows that under the new probability measure Vu (defined in 

section 6), the estimation error, c = x(t) — x(t) is a Gaussian process with zero 



mean and covariance matrix given P(t) by (21). Hence, if the output feedback 
stochastic control problem has a solution via controller switching it follows that 
the solution, P{-), to the Ricatti differential equation (21) with initial condition, 
P(0) = Po, is denned and positive definite on [*0)*N]- NOW from Lemma (4) we 
have that the minimization of cost (25) is equivalent to minimizing (26) where 
x is the estimator state, V(x(tjv) = Sux(tif)Xfx(ttf) is the cost at the final 
position and 

where 

dx(t) = (A{t)£ + B2(t)u(t))dt + P(t)C ((jÄftp^t) - C(t)x)dt 

= (A{t)x + B2{t)u{i))dt + dv{t) 

£>(«)] = 0 

Su[v\t)u{t)\ = p\t)Cf(t)R{t)-xC{t)P(t). 

(27) 

(28) 

The statement of the Theorem now follows immediately from Theorem 1. 

Remark Results for discrete time switched controller systems can be shown to 
trivially follow from the results presented in this paper. 

4    Illustrative Example 

We consider the 2 dimensional, unstable, non-minimum phase system 

A(t) = 
0     1 

-1.25 1 ,Bi(<) = ,B2(t) = ,C(t) = 
-1 
2 

(29) 

Consider the system (17) the following set of output feedback controllers 

Ul(t) = [-l,2]x(t),  u2(t) = [3,-6]x(t), (30) 

and permissible controller switching at time instants jT, j = 0,1,..., 250, T = 
0.05 over the time interval [0,12.5) seconds. It can be easily verified that each of 
the controllers in (30) is independently unable to stabilize the plant. 

For simulation purposes set to Xj = 10/ and the matrix observer Ricatti 
equation (21) initial condition P(0) = I. The process and observation noises were 
also set to £{w(t)) = 0, £{w(t)w'{t)) = 0.1, S{v{t)) = 0 and £{v{t)v\t)) = 0.1. 
The matrices N(t) and M(t) are N(t) = 0.1 and 

-»-[!5] (31) 

Using the results of Theorem 2 we see in Figure (3) that by switching the two 
unstable controllers the system state remains within an a small neighborhood 
about the origin. The control input to the system, is shown in Figure (4). The 
switching between the two controllers is evident. 



5 Conclusions 

In this paper we presented a solution to certain problems in switched controller 
design for stochastic dynamical systems. The main result is a separation theorem 
for partial information systems which can be used to convert the partial infor- 
mation stochastic control problem to a complete information stochastic control 
problem. We also show that certainty equivalence does not hold and for different 
noise statistics the optimal switching sequence changes. Finally we show that 
the optimal sequence of controllers can be determined by solving a dynamic pro- 
gramming equation. The results presented in this paper can be extended to the 
infinite time interval after some technical issues are taken into consideration. 

6 Appendix 

There is an intrinsic difficulty in output feedback stochastic control problems 
arising from the fact that the controller and hence the control depends on the 
observation. This difficulty has been solved for linear quadratic Gaussian stochas- 
tic control problem but it is not immediately clear that these results cover the 
class of switching systems considered in this paper. Thus in order to establish 
Theorem (2), we need to establish the existence of a new probability measure 
in which the output and all the admissible controls are independent. This then 
overcomes the difficulty described above. In order to establish the existence of 
such a measure we will need the following definitions and Lemmata. The argu- 
ment here essentially follows [6] except that special attention must be given to 
the switching times were solutions to the equations describing the dynamics are 
not well defined. 

Define the processes «(•), /?(•) by 

da = A(t)adt + dw{t),  a(0) = £ (32) 

dß = C{t)ßdt + dv(t),  ß{0) = 0 

(33) 

also define xi, j/i by 

dxi = (A(t)x! + B2(t)u{t))dt,  X!(0) = 0 (34) 

dyi = C(t)Xldt,   yi(0) = 0. (35) 

For any admissible control u(t) we define 

x{t) = a{t) + Xl(t) 

y(t)=a(t) + yi(t). (36) 

We then consider the following two processes [6] 

7j°(f) =exp 17 x'(t)C{t)R(t)-1dy- ^ f z^'C^'Ä^)-1^)^) J(37) 

«*"»(«) = VW - f C{t)x{s)ds (38) 
Jo 



where the superscript u is to show the dependence of TJ" on the the control u(t). 
The process 77" (38) satisfies the stochastic differential equation for all time 

t G [0, tjv) ^ tj where tj are the controller switching times 

dV
u = T)u(x'C')R-1dy,  »?u(0) = l. (39) 

Furthermore we define J* (u) as 

■/>(•)) = (40) 

£ Uu(tN) (x'{tN)Xfx(tN) + jN t)u{t)x'{t)N(t)x(t) + u{t)'M{t)u{t)\ dt  . 

Since the controls are piecewise linear (affine in the state) between the switching 
times on the interval [tj, tj+i) all that is required to be shown for the existence of 
a new probability measure V" which makes the observation process independent 
of the control are that the cost, J*(u(-)) under the new measure is finite and 
that the Radon-Nikodym derivative [11] 

dVu 

-^- = Vu(tN) (41) 

is a martingale. This is established in Lemmata (1,2,3) below which closely 
follow [6] but with modifications required to account for controller switching on 
a countable set. 

Lemma 1.  There exists a constant, C\, independent of the control such that 

£rf{t) I a{t) |4< d (42) 

Proof. Consider the following approximation of rf, 

r£{t) = exp y x'tC'^Ritr^dy-^j (x'tC'{t)R{t)-lC{t)xcds (43) 

where 

•■") = (i + .|1'(')lT'>- (44) 

There exists a subsequence, denoted by e, such that 

almost surely (a.s.) r%(t) -+ rju(t) V*. (45) 

It follows that 

<f|a(<)|4 = 4|a(*)|V(<) [A(t)a(t)dt + dw] + 2 [a(t)2trQ(t) + 2a'Q(t)a] dt(46) 



and 

du{t)\a{t)\* = 4i£(«)|a(t)|V(t) [A(t)a(t)dt + dw] + rf^Ht^x'fi'R^dy 
+ 2i£(f) [a(t)2trQ(t) + 2o/Q(f)a] dt W £ [0, tjv) # *i. (47) 

Upon integrating between (0,t), using the smoothing property of integrals and 
taking the expectation it follows that 

a£WW*)|4 = *K|4 + 4£ f tf(S)\a(s)\2a'(s)A(t)a(t)dt 
Jo 

+ 2S f tiH(s) [\a(s)\2trQ + 2a'Qa] ds. (48) 
Jo 

Using the fact that £r)"(s) = 1 Vs it can be shown that 

£^t)Ht)\*<m* + C2(i + eJ\^(s)\a{s)\*ds^ (49) 

where C2 is a constant independent of c and «(•). Using the Gronwall Lemma 
one immediately obtains 

*?"(*)K*)l4<Ci. (50) 

Hence taking the limit as e -4 0, the claim of the lemma immediately follows. 

Lemma 2. For any admissible control, u € X, and for all trajectories the cost 
denoted by J* (u()) is finite. 

Proof. It follows from the Gronwall Lemma that 

rT \ l<2 

|2„ 

)l/2 

M<)l<CsU    |«(-)l'*|      . (51) 

Using the definition of (36) and from Lemma (1) it follows that on the finite 
interval [0, tN) there exists a constant C\ such that 

a??(*)l«(*)l3<Ci. (52) 

substituting into J* («(•)) the claim of the lemma is established. 

Lemma 3. rju(t) is a T* martingale. 

Proof. From Lemma 2.4.2 (pg 40) of [6] all that needs to be established is that 

ef    r}u(t)\u{t)\2dt< 00. (53) 
Jo 

Using the fact that the system is piecewise linear and r)v(t) is finite for all 
t € [0, tj\r) it follows trivially that there exists a constant C3 such that 

S j"rf{t)\u{-)\2dt<Cz. (54) 
Jo 



The following Lemma is also needed in the proof of Theorem (2). 

Lemma 4. Suppose that the solution P(-) to the Ricatti differential equation 
(21) with initial condition P(0) = P0 is defined and positive definite on the 
interval [0, tN) then 

.jamN£u (x'(tN)Xfx{tN) + j "x'(t)N(t)x{t) + u'(t)M(t)u{t)dt\ 

= .=min^£" (x(tN)Xfx{tN) + f "x'(t)N(t)x{t) + u'{t)M(t)u{t)dt\ 

+SU (e'(tN)Xfe(tN) +fNe'{t)N(t)e(t)dt\ . (55) 

Proof. Rearranging (25) we have 

£u (eu \x'(tN)Xfx{tN) + JN
x'(t)N(t)x(t) + u'{t)M{t)u{t)dt | 2*1) = 

£u (Su [(x(tN) - x(tN))'Xf(x(tN) - x(tN)) + (x(tN) - x(tN))'xfx(tN) | 2*]) 

+£u (£u [x'(tN)Xf(x{tN) - x{NT)) + x'(tN)Xfx(tN) | 2*]) + 

£U {£u [C{<t)+m> m{x{t)"m+ 

(x(t) - x(t))'N(t)x(t) - x'(t)N(x(t) - x(t)) | 2*]) + 

£U (f [/ " * W^W*W + A*)M(t)u(t)dt | 2*1 Y (56) 

Using the orthogonality property of the Kaiman filter [16], namely £[(x-x)Zx] = 
0 where Z is any matrix, it immediately follows that 

£u {£u \x'{tN)Xfx(tN) + J "x'(t)N(t)x{t) + u'(t)M{t)u{t)dt | 2*1) 

= £u Uu \x{tN)Xfx{tN) + J N x\t)N(t)x(t) + u'(t)M{t)u{t)dt | 2*1) 

+ £u (e'(tN)Xje(tN) +JNe {t)Ne{t)dt\ . (57) 

The result now follows immediately. 
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Fig. 1. Controller decision diagram with no noise. 

Controller Regions with noise 
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Fig. 2. Controller decision diagram with noise, E[w] = 0,E[w'w] — 1.0 



States vs Time t 

Fig. 3. Evolution of plant states with time. 

Control Input vs Time 
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Fig. 4. Evolution of control input u(t) with time for the switching controller. 


